機械部品の熱処理・表面処理基礎講座
本講座(全8章50講座)では、機械部品に用いられている金属材料(主に鉄鋼材料)の種類と、それらに適用されている熱処理(焼なまし、焼入れなど)および表面処理(浸炭・窒化処理、めっき、PVD・CVDなど)について、概略と特徴を紹介します。
6-2 防錆・防食と表面処理
腐食には、乾式による腐食(乾食)と湿式による腐食(湿食)とがあり、機械部品においてとくに問題になるのは後者です。乾食とは高温加熱の際に生じる腐食のことで、空気中など酸素を含む雰囲気中で加熱されたときに生じる酸化(高温酸化)や塩素など反応ガス中で加熱したときに生じる腐食があります。
湿食とは水が存在する際に生じる腐食のことで、その発生する原因としては、材料の種類や構造上の問題、熱処理や表面処理の問題などがあり、発生状況によって、個々に適した防止対策が必要です。図1に、鉄鋼製品に生じた主な腐食事例を示すように、湿食には製品の表面が全面的に腐食される全面腐食、表面から局部的にピット上に腐食していく孔食、結晶粒界に沿って局部的に腐食が進行する粒界腐食などがあります。

図1 鉄鋼製品に生じた腐食事例
化学的因子による損傷すなわち腐食の大半は電気化学的反応によるものであり、腐食環境中で腐食電池が形成されてアノード側の金属が溶出するものです。この腐食電池が形成される要因としては、金属材料中の化学成分や金属組織の不均一、表面処理層(めっき膜など)の欠陥、異種金属の接触、使用環境におけるイオンや溶存酸素の濃度差、使用環境の温度差などがあります。
表1 金属材料において腐食電池が形成される事例
アノード側(腐食・溶出する) | カソード側 | ||
---|---|---|---|
単一金属の場合 〔ミクロ腐食電池〕 |
黄銅 | 亜鉛 | 銅 |
ステンレス鋼 | オーステナイトフェライト | 炭化物、不働態膜、 | |
鉄鋼(焼なまし) | フェライト | 炭化物、非金属介在物 | |
鉄鋼(焼入れ、焼戻し) | 微細パーライト、ソルバイト | マルテンサイト | |
複数金属の場合 〔マクロ腐食電池〕 |
めっき品(Ⅰ) | 亜鉛 | 軟鋼、合金鋼 |
めっき品(Ⅱ) | 軟鋼、合金鋼 | ニッケル、クロム | |
組合せ品(Ⅰ) | アルミニウム | ステンレス鋼、銅 | |
組合せ品(Ⅱ) | 軟鋼 | ステンレス鋼 | |
ロウ付け品 | 黄銅 | 銀ろう |
表1に、金属材料からみた場合の腐食電池が形成される事例を示すように、単一金属の場合のようにミクロ的なものから、複数の金属によるマクロ的なものがあります。電極電位の低い(卑)ほうがアノード側に、電極電位の高い(貴)ほうがカソードになり、アノード側が腐食・溶出します。
製品や部品の構造上の問題としては、ボルト締結箇所や溶接箇所など部品同士のすきまなどに発生するすきま腐食があります。すきま内は外部周辺よりも溶存酸素の供給が不十分になって希薄になるため、酸素濃淡電池が形成されることによる腐食現象です。
その他には、塑性加工等によって強加工を受けて大きな内部応力を有する金属製品において、腐食環境にさらされていた場合に生じる応力腐食割れがあります。とくに、オーステナイト系ステンレス鋼は塩化物が存在する水溶液中で生じやすく、しかも、部品を組み込んで時間の経過後に破壊しますから、この破壊現象は遅れ破壊またはシーズンクラック(時期割れ)ともよばれています。
金属材料の防錆・防食法には、図2に示すように、使用環境に適した材料選択、環境処理(腐食因子の除去や腐食抑制剤の利用)、環境遮断(表面処理の利用)、電気防食の利用などがあります。表面処理は古くから腐食環境の遮断を目的として採用されることが多く、金属被覆と非金属被覆が使用状況に応じて利用されています。

図2 鉄鋼製品に適用されている防錆・防食法の種類
非金属被覆には塗装をはじめライニングなどがあり、腐食環境から完全に遮断するために利用されています。金属被覆法としては、めっきや金属溶射などが防錆・防食のために利用されています。ただし、皮膜が基材よりも卑な金属の場合と貴な金属の場合とで、その防食原理がまったく異なりますから、図3に示すようにめっき欠陥部からの腐食状況も膜種によって異なります。

図3 めっき欠陥部からの腐食状況に及ぼす膜種の影響
皮膜が卑な金属のめっきとしては、防錆・防食だけが目的のものが多く、建造物などに利用されている溶融亜鉛めっき、ボルトなどへの電気亜鉛めっきがあります。この防食原理は、鉄(Fe)よりも卑な金属である亜鉛(Zn)がアノードになって溶出するため、下地である鋼は腐食から守られることであり、このような防食法のことを犠牲防食といいます。
皮膜が貴な金属のめっき膜としては、ニッケル(Ni)、スズ(Sn)、金(Au)、クロム(Cr)などが挙げられます。これらは湿式環境下では皮膜のほうが基材である鉄(Fe)よりも貴ですから、ピンホールなどのめっき欠陥箇所から基材の腐食が進行します。すなわち、これらの皮膜は、乾式環境下における装飾(美観)や耐摩耗性付与などを主目的とするのであれば非常に有効ですが、ピンホールのようなめっき欠陥がある場合には、湿潤環境下での防錆・防食効果はほとんど期待できません。
『機械部品の熱処理・表面処理基礎講座』の目次
第1章 機械部品に用いられる材料
-
1-1機械材料の種類と分類機械を構成している材料は、総称して機械材料と呼ばれています。機械材料は図1のように、金属材料、非金属材料および複合材料に分類できます。
-
1-2鉄鋼材料の種類と分類鉄鋼材料は、合金元素の添加や熱処理によって物理的性質や機械的性質を容易にコントロールすることができます。
-
1-3鉄鋼とは鉄鋼材料の主成分は鉄(Fe)であり、そのほかに必ず含まれる元素があります。
-
1-4純鉄の結晶構造金属は、原子が規則正しく配列した結晶であり、その配列の仕方によって種々の結晶構造が存在します。
-
1-5鉄鋼の温度と金属組織の関係(鉄―炭素系平衡状態図)鋼の基本は鉄(Fe)と炭素(C)との合金であり、含有する炭素量によって各温度における金属組織は異なります。
-
1-6鉄鋼の冷却速度と特性の関係(連続冷却変態)前回解説した鉄―炭素系の平衡状態図は、鉄鋼材料を扱う者にとっては重要ですが、熱処理作業においては連続冷却変態曲線のほうがもっと重要です。
-
1-7鉄鋼の等温保持による特性の変化(等温変態)前回は、オーステナイト領域から連続冷却したときの変態について説明し、熱処理との関係を示しました。
第2章 鉄鋼製品に実施されている熱処理の種類とその役割
-
2-1熱処理の種類と分類熱処理とは、適当な温度に加熱して冷却する操作のことを言い、鉄鋼材料はこの操作によって所定の機械的性質や耐摩耗性が付加され、個々の持っている特性が引き出されます。
-
2-2完全焼なましと焼ならしの役割完全焼なましは、機械構造用炭素鋼および機械構造用合金鋼にはよく適用される処理で、主な役割は組織の調整と軟化です。
-
2-3球状化焼なましの役割球状化焼なましは、炭素工具鋼(SK)、合金工具鋼(SKS)および軸受鋼(SUJ)には必須の熱処理です。
-
2-4応力除去焼なましの役割低温焼なましは、溶接、鋳造、冷間加工などによって生じた残留応力を除去し、軟化や焼入変形の軽減を目的として行われるもので、加熱温度はA1変態点以下です。
-
2-5焼入れと焼戻しの役割焼入れの目的は二つあり、機械構造用鋼と工具鋼とでは異なります。機械構造用鋼に対する目的は、高い強度を付与することであり、焼入れ後に施す焼戻しとの組み合わせによって、要求される機械的性質を得るための前処理として位置づけられています。
-
2-6等温熱処理の種類と役割等温変態曲線を利用した熱処理は等温熱処理とよばれ、同等の金属組織が得られる通常の熱処理よりも、短時間処理が可能なこと、熱処理にともなう変形が少ないこと、機械的性質の優れたものが得られることなど、多くの利点がある熱処理法です。
第3章 機械構造用鋼の焼入れ・焼戻し
-
3-1機械構造用鋼の種類と分類機械部品に多用されている機械構造用鋼は、機械構造用炭素鋼、機械構造用合金鋼、焼入性を保証した構造用鋼がJISに規定されています。
-
3-2熱処理条件と金属組織機械構造用鋼の持っている最高の特性を発揮させるためには、理想的には焼入れによって完全なマルテンサイト組織にすることです。
-
3-3熱処理条件と硬さの関係硬さは機械的性質を決める基本ですから、熱処理を依頼する際には、硬さ指定するのが普通です。しかも、その硬さは焼入れと焼戻しとの組み合わせで決まりますから、それらの条件設定は非常に重要です。
-
3-4熱処理条件と機械的性質の関係機械構造用鋼にて作製した機械部品に要求される特性は、引張強さやせん断強さと同時に衝撃に強いことです。これらの特性は、材質によっても異なりますが、一般には焼入れ焼戻しによって調整されています。
-
3-5硬さと機械的性質の関係前項までに記述したように、機械構造用鋼の硬さや機械的性質は焼戻温度に依存していることが明らかです。
-
3-6焼入性と合金元素の関係焼入後の硬さの値は表面からの測定値で表しますが、鋼種によっては内部硬さが全く異なることも多々あります。
-
3-7質量効果と合金元素の関係前回紹介した焼入性とは、鋼材そのものの特性ですから、JISによって試験片の寸法・形状、焼入加熱温度が規定されていますし、焼入冷却は試験片の一端からの噴射冷却で、そのときの冷却速度は無限大が前提になっています。
第4章 ステンレス鋼とその熱処理
-
4-1ステンレス鋼の種類と用途ステンレス鋼はCrを11%以上含有した鋼で、金属組織の違いによって、オーステナイト系、オーステナイト・フェライト系(二相系)、フェライト系、マルテンサイト系および析出硬化系に分類されています。
-
4-2オーステナイト系ステンレス鋼の熱処理オーステナイト系ステンレス鋼は、焼入れによって硬くして、引張強さを高めることはできません。
-
4-3マルテンサイト系ステンレス鋼の熱処理マルテンサイト系ステンレス鋼は、図1に示すように焼入れによってマルテンサイト組織が得られ、低温焼戻しによって優れた耐摩耗性とじん性が付与されますから、耐食性も重視した機械構造用部品、医科用機械部品、刃物および金型などに多用されています
-
4-4析出硬化系ステンレス鋼の熱処理析出硬化系ステンレス鋼は、SUS630とSUS631の2種類がJISで規定されています。表1に示すように、両鋼種とも固溶化熱処理後(熱処理記号:S)に析出硬化熱処理を行い、所定の強度を付与して使用されます。
第5章 非鉄金属材料とその熱処理
-
5-1アルミニウム合金とその熱処理アルミニウムおよびアルミニウム合金には、展伸材と鋳物材があります。展伸材とは、圧延加工した板や条、展伸加工した棒や線のことをいいます。
-
5-2銅合金とその熱処理銅は有色金属で色合いが美しく、切削加工や塑性加工が容易で、しかも鋳造性も良好なため、鉄よりも遥かに古くから使用されています。
-
5-3チタン合金の熱処理チタンは、密度が鉄の約1/4ですから軽量金属材料として分類されており、しかも比強度が高く、耐食性も優れています。
第6章 機械部品に対する表面処理の役割
-
6-1清浄と表面処理表面処理を適用する場合、汚れが付着したままでは、密着不良になるだけでなく、正常な処理層が得られないなどの不具合を生じてしまいます。
-
6-2防錆・防食と表面処理腐食には、乾式による腐食(乾食)と湿式による腐食(湿食)とがあり、機械部品においてとくに問題になるのは後者です。
-
6-3着色と表面処理着色は、表面処理の種類によっては代表的な利用目的であり、図1に示すように、着色法には塗装、印刷およびPVDなど物理的方法、薬品による表面反応や加熱による酸化を利用する化学的方法、電気めっきや陽極酸化など電気化学的方法があります。
-
6-4摩擦摩耗特性と表面処理機械部品において、使用中に相手との摩擦をともなう箇所では、必ず摩耗が発生しますから、耐摩耗性を付与するために種々の表面硬化処理が利用されています。
-
6-5耐疲労性と表面処理疲労(疲れ)とは、物体が繰返し応力を受けた際に、その応力が物体の持つ引張強さよりも小さい応力であっても、徐々にき裂が発生・進展していくことで、最終的には破壊してしまいます。
第7章 機械部品を対象とした主な表面処理
-
7-1表面処理の種類と分類表面処理とは、製品や部品の表面を何らかの方法で処理加工することで、表1のように分類することができます。
-
7-2表面焼入れの種類と適用表面焼入れとは、鋼の変態点以上(オーステナイト領域)まで急速に加熱し、内部温度が上昇する前に急速に冷却して表面だけ硬化させるものです。
-
7-3浸炭/浸炭窒化処理の種類と適用浸炭とは、炭素含有量の少ない鋼を浸炭剤中でオーステナイト領域の高温(900℃位)に加熱し、表面から炭素(C)を拡散浸透させることです。
-
7-4窒化/軟窒化処理の種類と適用窒化処理は、表1に示すように、工業的にはガス窒化から始まり、塩浴を用いる方法やプラズマを用いる方法など多くの方法が開発され、広範囲の分野で採用されています。
-
7-5金属元素の拡散浸透処理の種類と適用金属元素の拡散浸透処理は、主に鋼を対象として耐食性や耐熱性の付加を目的として利用されています。
-
7-6電気めっきの原理と適用電気めっきとは、めっきしたい金属イオンを含む水溶液中で、めっき処理品を陰極(-極)、めっきしたい金属を陽極(+極)として電解するものです。
-
7-7無電解めっきの原理と適用無電解めっきは、電気を使わないで化学反応によって皮膜を析出させますから、化学めっきともよばれています。
-
7-8溶融めっきの原理と適用溶融めっきとは、溶融金属中に処理物を浸漬して表面に溶融金属の皮膜を形成させるものです。
-
7-9溶射の種類と適用溶射とは、燃焼炎または電気エネルギーを用いて溶射材料を加熱し、溶融またはそれに近い状態にした粒子を物体表面に吹き付けて皮膜を形成させる表面処理法です。
第8章 機械部品の損傷と調査法
-
8-1機械部品の破損の種類金属製品の損傷には、物理的因子によるものと化学的因子によるものがあります。
-
8-2機械部品の破壊に及ぼす因子金属製品の破壊に及ぼす因子としては、図1に示すように、金属製品自身の問題と使い方の問題があります。
-
8-3機械部品の熱処理欠陥熱処理欠陥には多くの種類がありますが、初期損傷として発覚することが多いので、その大部分は使用する前に露見します。
-
8-4破損品の原因調査手順破損とは物理的因子によって生じる損傷で、その現象には破壊、変形および摩耗があります。
-
8-5マクロ観察による破壊形態の確認破壊原因を特定するためには、破面を観察することは当然ですが、いきなり走査型電子顕微鏡(SEM)によってミクロ観察するのではなく、はじめにマクロ観察によって破面の状況を十分に把握しなければなりません。
-
8-6ミクロ破面の観察による破壊形態の確認破面のミクロ観察は通常走査型電子顕微鏡によって行われています。破壊には結晶粒界に沿って亀裂が進行する粒界破壊と結晶粒内を進行する粒内破壊があります。
-
8-7機械部品の破損事例(脆性破壊)脆性破壊を生じる要因としては、硬質部品におけるエッジ箇所の存在、材料不良や熱処理不良、めっき時の水素の侵入、残留応力など種々のものがあげられます。
-
8-8機械部品の破損事例(疲労破壊)疲労破壊とは、繰返し負荷される荷重によって破壊するもので、とくに機械部品には最も多く発生するものです。
-
8-9機械部品の破損事例(めっき品のトラブル)機械部品は主に耐食性を付加するために、亜鉛(Zn)めっきをはじめ種々のめっきの適用事例が多いのですが、同時にめっき品に発生する不具合も多々あります。